Cartesian closed exact completions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cartesian products as profinite completions

We prove that if a Cartesian product of alternating groups is topologically finitely generated, then it is the profinite completion of a finitely generated residually finite group. The same holds for Cartesian producs of other simple groups under some natural restrictions.

متن کامل

Exact completions and toposes

Toposes and quasi-toposes have been shown to be useful in mathematics, logic and computer science. Because of this, it is important to understand the different ways in which they can be constructed. Realizability toposes and presheaf toposes are two important classes of toposes. All of the former and many of the latter arise by adding “good” quotients of equivalence relations to a simple catego...

متن کامل

Semi-abelian Exact Completions

The theory of protomodular categories provides a simple and general context in which the basic theorems needed in homological algebra of groups, rings, Lie algebras and other non-abelian structures can be proved [2] [3] [4] [5] [6] [7] [9] [20]. An interesting aspect of the theory comes from the fact that there is a natural intrinsic notion of normal monomorphism [4]. Since any internal reflexi...

متن کامل

Unifying exact completions

We define the notion of exact completion with respect to an existential elementary doctrine. We observe that the forgetful functor from the 2-category exact categories to existential elementary doctrines has a left biadjoint that can be obtained as a composite of two others. Finally, we conclude how this notion encompasses both that of the exact completion of a regular category as well as that ...

متن کامل

Exact Completions and Small Sheaves

We prove a general theorem which includes most notions of “exact completion” as special cases. The theorem is that “κ-ary exact categories” are a reflective sub-2-category of “κ-ary sites”, for any regular cardinal κ. A κ-ary exact category is an exact category with disjoint and universal κ-small coproducts, and a κ-ary site is a site whose covering sieves are generated by κ-small families and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 1999

ISSN: 0022-4049

DOI: 10.1016/s0022-4049(98)00146-7